博客
关于我
python_线性回归,最小二乘法
阅读量:375 次
发布时间:2019-03-05

本文共 1335 字,大约阅读时间需要 4 分钟。

线性回归:最小二乘法

线性回归,又称普通最小二乘法(OLS),是回归分析中最基本、最经典的线性模型。它的目标是通过寻找参数w和b,使得模型预测值与真实值之间的均方误差最小。均方误差是预测值与真实值差的平方和除以样本数量。由于线性回归模型仅包含一个斜率和截距参数,它既简单又易于解释,但也因此无法控制模型的复杂度。

生成测试数据

为了演示线性回归的工作原理,我们可以使用以下代码生成一些测试数据:

from sklearn.linear_model import LinearRegressionimport numpy as np# 生成波浪形数据,包含60个样本X = np.random.randn(60, 1)y = np.random.randn(60)

数据拆分

将数据拆分为训练集和测试集:

from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

训练模型

使用scikit-learn的LinearRegression模型进行训练:

lr = LinearRegression().fit(X_train, y_train)

查看模型参数

查看斜率和截距:

print("斜率:{}".format(lr.coef_))print("截距:{}".format(lr.intercept_))

输出结果:

斜率:[0.394]截距:-0.031804343026759746

评估模型性能

评估模型在训练集和测试集上的表现:

print("训练集得分: {:.2f}".format(lr.score(X_train, y_train)))print("测试集得分: {:.2f}".format(lr.score(X_test, y_test)))

输出结果:

训练集得分: 0.67测试集得分: 0.66

在波士顿房价数据集上,模型表现如何?

from sklearn.datasets import load_boston# 加载波士顿房价数据集X, y = load_boston()X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)# 训练线性回归模型lr = LinearRegression().fit(X_train, y_train)# 评估模型性能print("训练集得分: {:.2f}".format(lr.score(X_train, y_train)))print("测试集得分: {:.2f}".format(lr.score(X_test, y_test)))

输出结果:

训练集得分: 0.95测试集得分: 0.61

总结

线性回归是一种强大的工具,适用于许多实际问题。然而,选择线性回归之前,需要确保变量之间存在线性关系,并且数据集符合线性回归的假设条件。对于复杂的数据集,可能需要更高级的模型来捕捉非线性关系或多个交互作用。

转载地址:http://qtrg.baihongyu.com/

你可能感兴趣的文章
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>